Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.230
Filtrar
1.
J Neurosurg Pediatr ; : 1-9, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608307

RESUMO

OBJECTIVE: Responsive neurostimulation (RNS) is a US FDA-approved form of neuromodulation to treat patients with focal-onset drug-resistant epilepsy (DRE) who are ineligible for or whose condition is refractory to resection. However, the FDA approval only extends to use in patients with one or two epileptogenic foci. Recent literature has shown possible efficacy of thalamic RNS in patients with Lennox-Gastaut syndrome and multifocal epilepsy. The authors hypothesized that RNS of thalamic nuclei may be effective in seizure reduction for patients with multifocal or regionalized-onset DRE. METHODS: The authors performed a retrospective chart review of all patients who had an RNS device managed at Texas Children's Hospital between July 2016 and September 2023, with at least one active electrode in the thalamic nuclei and ≥ 12 months of postimplantation follow-up. Information conveyed by the patient or their caregiver provided data on the change in the clinical seizure frequency, quality of life (QOL), and seizure severity between the preimplantation baseline visit and the last office visit (LOV). RESULTS: Thirteen patients (ages 8-24 years) were identified with active RNS leads in thalamic nuclei (11 centromedian and 2 anterior nucleus). At LOV, 46% of patients reported 50%-100% clinical seizure reduction (classified as responders), 15% reported 25%-49% reduction, and 38% reported < 25% reduction or no change. Additionally, 42% of patients reported subjective improvement in QOL and 58% reported improved seizure severity. Patients with focal cortical dysplasia (FCD) responded strongly: 3 of 5 (60%) reported ≥ 80% reduction in seizure burden and improvement in seizure severity and QOL. Patients with multifocal epilepsy and bilateral thalamocortical leads also did well, with all 3 reporting ≥ 50% reduction in seizures. CONCLUSIONS: RNS of thalamic nuclei shows promising results in reducing seizure burden for patients with multifocal or regional-onset DRE, particularly in a bilateral thalamocortical configuration or when addressing an underlying FCD.

2.
Epilepsy Res ; 202: 107356, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38564925

RESUMO

Implantable brain recording and stimulation devices apply to a broad spectrum of conditions, such as epilepsy, movement disorders and depression. For long-term monitoring and neuromodulation in epilepsy patients, future extracranial subscalp implants may offer a promising, less-invasive alternative to intracranial neurotechnologies. To inform the design and assess the safety profile of such next-generation devices, we estimated extracranial complication rates of deep brain stimulation (DBS), cranial peripheral nerve stimulation (PNS), responsive neurostimulation (RNS) and existing subscalp EEG devices (sqEEG), as proxy for future implants. Pubmed was searched systematically for DBS, PNS, RNS and sqEEG studies from 2000 to February 2024 (48 publications, 7329 patients). We identified seven categories of extracranial adverse events: infection, non-infectious cutaneous complications, lead migration, lead fracture, hardware malfunction, pain and hemato-seroma. We used cohort sizes, demographics and industry funding as metrics to assess risks of bias. An inverse variance heterogeneity model was used for pooled and subgroup meta-analysis. The pooled incidence of extracranial complications reached 14.0%, with infections (4.6%, CI 95% [3.2 - 6.2]), surgical site pain (3.2%, [0.6 - 6.4]) and lead migration (2.6%, [1.0 - 4.4]) as leading causes. Subgroup analysis showed a particularly high incidence of persisting pain following PNS (12.0%, [6.8 - 17.9]) and sqEEG (23.9%, [12.7 - 37.2]) implantation. High rates of lead migration (12.4%, [6.4 - 19.3]) were also identified in the PNS subgroup. Complication analysis of DBS, PNS, RNS and sqEEG studies provides a significant opportunity to optimize the safety profile of future implantable subscalp devices for chronic EEG monitoring. Developing such promising technologies must address the risks of infection, surgical site pain, lead migration and skin erosion. A thin and robust design, coupled to a lead-anchoring system, shall enhance the durability and utility of next-generation subscalp implants for long-term EEG monitoring and neuromodulation.

3.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602739

RESUMO

Non-invasive brain stimulations have drawn attention in remediating memory decline in older adults. However, it remains unclear regarding the cognitive and neural mechanisms underpinning the neurostimulation effects on memory rehabilitation. We evaluated the intervention effects of 2-weeks of neurostimulations (high-definition transcranial direct current stimulation, HD-tDCS, and electroacupuncture, EA versus controls, CN) on brain activities and functional connectivity during a working memory task in normally cognitive older adults (age 60+, n = 60). Results showed that HD-tDCS and EA significantly improved the cognitive performance, potentiated the brain activities of overlapping neural substrates (i.e. hippocampus, dlPFC, and lingual gyrus) associated with explicit and implicit memory, and modulated the nodal topological properties and brain modular interactions manifesting as increased intramodular connection of the limbic-system dominated network, decreased intramodular connection of default-mode-like network, as well as stronger intermodular connection between frontal-dominated network and limbic-system-dominated network. Predictive model further identified the neuro-behavioral association between modular connections and working memory. This preliminary study provides evidence that noninvasive neurostimulations can improve older adults' working memory through potentiating the brain activity of working memory-related areas and mediating the modular interactions of related brain networks. These findings have important implication for remediating older adults' working memory and cognitive declines.


Assuntos
Memória de Curto Prazo , Estimulação Transcraniana por Corrente Contínua , Vida Independente , Encéfalo/diagnóstico por imagem , Sistema Límbico
4.
Eur Spine J ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607406

RESUMO

PURPOSE: Aerobic exercise produces beneficial outcomes in patients with low back pain and partially attenuates the fibrotic changes to the multifidus in a model of intervertebral disc (IVD) degeneration. More targeted exercise might be required to fully attenuate these fibrotic alterations. This study aimed to investigate whether activation of the multifidus induced by neurostimulation could reduce fibrosis of the multifidus in a model of IVD degeneration in sheep. METHODS: IVD degeneration was induced in 18 merino sheep via a partial thickness unilateral annulus fibrosus lesion to the L1/2 and L3/4 IVDs. All sheep received an implantable neurostimulation device that provides stimulation of the L2 medial branch of the dorsal ramus. Three months after surgery, the animals were assigned to Injury or Activated groups. Activated animals received neurostimulation and the Injury group received no stimulation. Six months after surgery, the multifidus was harvested at L2 and L4. Van Gieson's, Sirius Red and immunofluorescence staining for Collagen-I and -III and quantitative PCR was used to examine fibrosis. Muscle harvested from a previous study without IVD injury was used as a control. RESULTS: Neurostimulation of the multifidus attenuated IVD degeneration dependent increases in the connective tissue, including Collagen-I but not Collagen-III, compared to the Injury group at L4. No measures of the multifidus muscle at L2, which received no stimulation, differed between the Injury and Activated groups. CONCLUSIONS: These data reveal that targeted activation of the multifidus muscle attenuates IVD degeneration dependent fibrotic alterations to the multifidus.

5.
J Clin Med ; 13(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38592096

RESUMO

Psychological, social, and biological aspects contribute synergistically to the maintenance and chronicity of pain in primary headaches. An integrated intervention seems to be the most appropriate in the management of these conditions, taking advantage not only of pharmacological strategies, but also of different approaches according to the global assessment and patient necessities. In this perspective, non-pharmacological treatments are becoming increasingly used to overcome these issues also in paediatric migraine treatment. Particularly, nutraceuticals, non-invasive neuromodulation, and behavioural approaches are well tolerated and of potential interest. This paper aims to present the main approaches reported in the literature in the management of migraine in children and adolescents presenting an up-to-date review of the current literature. We therefore performed a narrative presentation for each of these three categories: nutraceuticals (riboflavin; magnesium; melatonin; vitamin D; coenzyme Q10; and polyunsaturated fatty acid); non-invasive neuromodulation (trigeminal nerve stimulator; non-invasive vagal nerve stimulation; transcranial magnetic stimulation; and remote electrical neuromodulation), and behavioural therapies (biofeedback; cognitive behavioural therapy; and mindfulness-based therapy). These approaches are increasingly seen as a valid treatment option in primary headache management also in paediatrics, avoiding medication overuse and drug treatment contraindications.

8.
Clin Neurophysiol ; 162: 151-158, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38640819

RESUMO

OBJECTIVE: To report clinical outcomes of patients who presented with new-onset refractory status epilepticus (NORSE), developed drug-resistant epilepsy (DRE), and were treated with responsive neurostimulation (RNS). METHODS: We performed a retrospective review of patients implanted with RNS at our institution and identified three who originally presented with NORSE. Through chart review, we retrieved objective and subjective information related to their presentation, workup, and outcomes including patient-reported seizure frequency. We reviewed electrocorticography (ECoG) data to estimate seizure burden at 3, 6, 12, and 24 months following RNS implantation. We performed a review of literature concerning neurostimulation in NORSE. RESULTS: Use of RNS to treat DRE following NORSE was associated with reduced seizure burden and informed care by differentiating epileptic from non-epileptic events. CONCLUSIONS: Our single-center experience of three cases suggests that RNS is a safe and potentially effective treatment for DRE following NORSE. SIGNIFICANCE: This article reports outcomes of the largest case series of NORSE patients treated with RNS. Since patients with NORSE are at high risk of adverse neuropsychiatric and cognitive sequelae beyond seizures, a unique strength of RNS over other surgical options is the ability to distinguish ictal or peri-ictal from non-epileptic events.

9.
Presse Med ; : 104232, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641202

RESUMO

Neuropathic pain continues to be a significant problem that lacks effective solutions for every single patient. In 2015, international guidelines (NeuPSIG) were published, while the French recommendations were updated in 2020. The purpose of this minireview is to provide an update on the process of developing evidence-based recommendations and explore potential changes to the current recommendations. Primary treatments for neuropathic pain include selective serotonin-norepinephrine reuptake inhibitors (SNRIs) such as duloxetine and venlafaxine, gabapentin, tricyclic antidepressants, as well as topical lidocaine and transcutaneous electrical nerve stimulation, which are specifically suggested for focal peripheral neuropathic pain. Pregabalin is a first line treatment according to international guidelines but second-line in the more recent French guidelines, due to lower efficacy seen in more recent studies and misuse risk. Additionally, tramadol, combination therapies, and psychotherapy as adjuncts are proposed second line; high-concentration capsaicin patches, and botulinum toxin A are proposed specifically for focal peripheral neuropathic pain. In cases where primary and secondary treatments prove insufficient, third-line options come into play. These include high-frequency repetitive transcranial magnetic stimulation (rTMS) targeting the motor cortex, spinal cord stimulation, and the use of strong opioids when no alternative is available. To ensure optimal management of neuropathic pain in real-life situations, it is imperative to disseminate these recommendations widely and secure the acceptance of practitioners. By doing so, we can bridge the gap between theory and practice, and enhance the overall care and treatment of individuals suffering from neuropathic pain.

10.
Neurol Sci ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642321

RESUMO

Drug-resistant epilepsy (DRE) poses significant challenges in terms of effective management and seizure control. Neuromodulation techniques have emerged as promising solutions for individuals who are unresponsive to pharmacological treatments, especially for those who are not good surgical candidates for surgical resection or laser interstitial therapy (LiTT). Currently, there are three neuromodulation techniques that are FDA-approved for the management of DRE. These include vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation (RNS). Device selection, optimal time, and DBS and RNS target selection can also be challenging. In general, the number and localizability of the epileptic foci, alongside the comorbidities manifested by the patients, substantially influence the selection process. In the past, the general axiom was that DBS and VNS can be used for generalized and localized focal seizures, while RNS is typically reserved for patients with one or two highly localized epileptic foci, especially if they are in eloquent areas of the brain. Nowadays, with the advance in our understanding of thalamic involvement in DRE, RNS is also very effective for general non-focal epilepsy. In this review, we will discuss the underlying mechanisms of action, patient selection criteria, and the evidence supporting the use of each technique. Additionally, we explore emerging technologies and novel approaches in neuromodulation, such as closed-loop systems. Moreover, we examine the challenges and limitations associated with neuromodulation therapies, including adverse effects, complications, and the need for further long-term studies. This comprehensive review aims to provide valuable insights on present and future use of neuromodulation.

11.
Presse Med ; : 104233, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636787

RESUMO

Neuropathic pain poses a significant challenge due to its complex mechanisms, necessitating specific treatments. In recent decades, significant progress has been made in the clinical research of neuropathic pain, marking a shift from empirical strategies to evidence-based medicine in its management. This review outlines both pharmacological and non-pharmacological interventions. Antidepressants (tricyclic and serotonin-noradrenaline reuptake inhibitors), antiepileptics (gabapentin, pregabalin), and topical agents constitute the main pharmacological treatments. These approaches target both peripheral and central mechanisms associated with neuropathic pain. Noninvasive neurostimulation, including transcutaneous electrical nerve stimulation (TENS) and repetitive transcranial magnetic stimulation (rTMS), provides non-pharmacological alternatives. However, challenges persist in effectively targeting existing medications and developing drugs that act on novel targets, necessitating innovative strategies. Personalized approaches, incorporating genetic data and advanced assessments, are crucial for enhancing precision in neuropathic pain management.

12.
Neuromodulation ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38639704

RESUMO

OBJECTIVES: Current techniques in brain stimulation are still largely based on a phrenologic approach that a single brain target can treat a brain disorder. Nevertheless, meta-analyses of brain implants indicate an overall success rate of 50% improvement in 50% of patients, irrespective of the brain-related disorder. Thus, there is still a large margin for improvement. The goal of this manuscript is to 1) develop a general theoretical framework of brain functioning that is amenable to surgical neuromodulation, and 2) describe the engineering requirements of the next generation of implantable brain stimulators that follow from this theoretic model. MATERIALS AND METHODS: A neuroscience and engineering literature review was performed to develop a universal theoretical model of brain functioning and dysfunctioning amenable to surgical neuromodulation. RESULTS: Even though a single target can modulate an entire network, research in network science reveals that many brain disorders are the consequence of maladaptive interactions among multiple networks rather than a single network. Consequently, targeting the main connector hubs of those multiple interacting networks involved in a brain disorder is theoretically more beneficial. We, thus, envision next-generation network implants that will rely on distributed, multisite neuromodulation targeting correlated and anticorrelated interacting brain networks, juxtaposing alternative implant configurations, and finally providing solid recommendations for the realization of such implants. In doing so, this study pinpoints the potential shortcomings of other similar efforts in the field, which somehow fall short of the requirements. CONCLUSION: The concept of network stimulation holds great promise as a universal approach for treating neurologic and psychiatric disorders.

14.
Neuromodulation ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38483366

RESUMO

BACKGROUND: Adults with refractory, mechanical chronic low back pain associated with impaired neuromuscular control of the lumbar multifidus muscle have few treatment options that provide long-term clinical benefit. This study hypothesized that restorative neurostimulation, a rehabilitative treatment that activates the lumbar multifidus muscles to overcome underlying dysfunction, is safe and provides relevant and durable clinical benefit to patients with this specific etiology. MATERIALS AND METHODS: In this prospective five-year longitudinal follow-up of the ReActiv8-B pivotal trial, participants (N = 204) had activity-limiting, moderate-to-severe, refractory, mechanical chronic low back pain, a positive prone instability test result indicating impaired multifidus muscle control, and no indications for spine surgery. Low back pain intensity (10-cm visual analog scale [VAS]), disability (Oswestry Disability Index), and quality of life (EuroQol's "EQ-5D-5L" index) were compared with baseline and following the intent-to-treat principle, with a supporting mixed-effects model for repeated measures that accounted for missing data. RESULTS: At five years (n = 126), low back pain VAS had improved from 7.3 to 2.4 cm (-4.9; 95% CI, -5.3 to -4.5 cm; p < 0.0001), and 71.8% of participants had a reduction of ≥50%. The Oswestry Disability Index improved from 39.1 to 16.5 (-22.7; 95% CI, -25.4 to -20.8; p < 0.0001), and 61.1% of participants had reduction of ≥20 points. The EQ-5D-5L index improved from 0.585 to 0.807 (0.231; 95% CI, 0.195-0.267; p < 0.0001). Although the mixed-effects model attenuated completed-case results, conclusions and statistical significance were maintained. Of 52 subjects who were on opioids at baseline and had a five-year visit, 46% discontinued, and 23% decreased intake. The safety profile compared favorably with neurostimulator treatments for other types of back pain. No lead migrations were observed. CONCLUSION: Over a five-year period, restorative neurostimulation provided clinically substantial and durable benefits with a favorable safety profile in patients with refractory chronic low back pain associated with multifidus muscle dysfunction. CLINICAL TRIAL REGISTRATION: The Clinicaltrials.gov registration number for the study is NCT02577354; registration date: October 15, 2016; principal investigator: Christopher Gilligan, MD, Brigham and Women's Hospital, Boston, MA, USA. The study was conducted in Australia (Broadmeadow, New South Wales; Noosa Heads, Queensland; Welland, South Australia; Clayton, Victoria), Belgium (Sint-Niklaas; Wilrijk), The Netherlands (Rotterdam), UK (Leeds, London, Middlesbrough), and USA (La Jolla, CA; Santa Monica, CA; Aurora, CO; Carmel, IN; Indianapolis, IN; Kansas City, KS; Boston, MA; Royal Oak, MI; Durham, NC; Winston-Salem, NC; Cleveland, OH; Providence, RI; Spartanburg, SC; Spokane, WA; Charleston, WV).

15.
Front Neurol ; 15: 1380423, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515452

RESUMO

Lennox Gastaut Syndrome (LGS) is characterized by drug-resistant epilepsy that typically leads to decreased quality of life and deleterious neurodevelopmental comorbidities from medically refractory seizures. In recent years there has been a dramatic increase in the development and availability of novel treatment strategies for Lennox Gastaut Syndrome patient to improve seizure. Recent advances in neuromodulation and minimally invasive magnetic resonance guided laser interstitial thermal therapy (MRgLITT) have paved the way for new treatments strategies including deep brain stimulation (DBS), responsive neurostimulation (RNS), and MRgLITT corpus callosum ablation. These new strategies offer hope for children with drug-resistant generalized epilepsies, but important questions remain about the safety and effectiveness of these new approaches. In this review, we describe the opportunities presented by these new strategies and how each treatment strategy is currently being employed. Next, we will critically assess available evidence for these new approaches compared to traditional palliative epilepsy surgery approaches, such as vagus nerve stimulation (VNS) and open microsurgical corpus callosotomy (CC). Finally, we will describe future directions that would help define which of the available strategies should be employed and when.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38521724

RESUMO

Neurostimulation of hypoglossal nerve has emerged as an effective treatment option of obstructive sleep apnea (OSA). Since FDA approval in 2014, therapy has been widely used in select patients with moderate-to-severe OSA who do not benefit from positive airway pressure. Ongoing research and technological developments continue to advance the therapy to deliver personalized and efficient treatment to patients with OSA.

17.
Life (Basel) ; 14(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38541656

RESUMO

Anomia, or difficulty naming common objects, is the most common, acquired impairment of language. Effective therapeutic interventions for anomia typically involve massed practice at high doses. This requires significant investment from patients and therapists. Aphasia researchers have increasingly looked to neurostimulation to accelerate these treatment effects, but the evidence behind this intervention is sparse and inconsistent. Here, we hypothesised that group-level neurostimulation effects might belie a more systematic structure at the individual level. We sought to test the hypothesis by attempting to predict the immediate (online), individual-level behavioural effects of anodal and sham neurostimulation in 36 chronic patients with anomia, performing naming and size judgement tasks. Using clinical, (pre-stimulation) behavioural and MRI data, as well as Partial Least Squares regression, we attempted to predict neurostimulation effects on accuracies and reaction times of both tasks. Model performance was assessed via cross-validation. Predictive performances were compared to that of a null model, which predicted the mean neurostimulation effects for all patients. Models derived from pre-stimulation data consistently outperformed the null model when predicting neurostimulation effects on both tasks' performance. Notably, we could predict behavioural declines just as well as improvements. In conclusion, inter-patient variation in online responses to neurostimulation is, to some extent, systematic and predictable. Since declines in performance were just as predictable as improvements, the behavioural effects of neurostimulation in patients with anomia are unlikely to be driven by placebo effects. However, the online effect of the intervention appears to be as likely to interfere with task performance as to improve it.

18.
Elife ; 132024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38450635

RESUMO

Closed-loop neuronal stimulation has a strong therapeutic potential for neurological disorders such as Parkinson's disease. However, at the moment, standard stimulation protocols rely on continuous open-loop stimulation and the design of adaptive controllers is an active field of research. Delayed feedback control (DFC), a popular method used to control chaotic systems, has been proposed as a closed-loop technique for desynchronisation of neuronal populations but, so far, was only tested in computational studies. We implement DFC for the first time in neuronal populations and access its efficacy in disrupting unwanted neuronal oscillations. To analyse in detail the performance of this activity control algorithm, we used specialised in vitro platforms with high spatiotemporal monitoring/stimulating capabilities. We show that the conventional DFC in fact worsens the neuronal population oscillatory behaviour, which was never reported before. Conversely, we present an improved control algorithm, adaptive DFC (aDFC), which monitors the ongoing oscillation periodicity and self-tunes accordingly. aDFC effectively disrupts collective neuronal oscillations restoring a more physiological state. Overall, these results support aDFC as a better candidate for therapeutic closed-loop brain stimulation.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Retroalimentação , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Algoritmos , Neurônios/fisiologia
19.
Elife ; 122024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38547008

RESUMO

In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual's subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants' subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.


Neuromodulation is a type of intervention that relies on various non-invasive techniques to temporarily stimulate the brain and nervous system. It can be used for the treatment of depression or other medical conditions, as well as the improvement of cognitive abilities such as attention. However, there is conflicting evidence regarding whether this approach has beneficial effects. Most studies aiming to assess the efficiency of a treatment rely on examining the outcomes of people who received the intervention in comparison to participants who undergo a similar procedure with no therapeutic effect (or placebo). However, the influence of other, 'subjective' factors on these results ­ such as the type of intervention participants think they have received ­ remains poorly investigated. To bridge this gap, Fassi and Hochman et al. used statistical modeling to assess how patients' beliefs about their treatment affected the results of four neuromodulation studies on mind wandering, depression and attention deficit hyperactivity disorder symptoms. In two studies, participants' perceptions of their treatment status were more strongly linked to changes in depression scores and mind-wandering than the actual treatment. Results were more nuanced in the other two studies. In one of them, participants who received the real neuromodulation but believed they received the placebo showed the most improvement in depressive symptoms; in the other study, subjective beliefs and objective treatment both explained changes in inattention symptoms. Taken together, the results by Fassi and Hochman et al. suggest that factoring in patients' subjective beliefs about their treatment may be necessary in studies of neuromodulation and other interventions like virtual reality or neurofeedback, where participants are immersed in cutting-edge research settings and might therefore be more susceptible to develop beliefs about treatment efficacy.


Assuntos
Neurorretroalimentação , Estimulação Transcraniana por Corrente Contínua , Adulto , Feminino , Humanos , Neurorretroalimentação/métodos , Estimulação Magnética Transcraniana , Resultado do Tratamento , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...